
Paper 50-27

DATA Step Essentials
Neil Howard, Pfizer, Inc., Ann Arbor, MI

Abstract
The DATA step is the most powerful tool in the SAS® system.
Understanding the internals of DATA step processing, what is
happening and why, is crucial in mastering code an output.
Concepts you should understand:
 what is the Logical Program Data Vector (LPDV or PDV),
 what are automatic SAS variables and how are they used,
 what is the SAS Supervisor,
 why it’s important to understand the internals of DATA step

processing,
 what happens at program compile time,
 what’s actually happening at execution time,
 how are variable attributes captured and stored.

By understanding DATA step processing, you can debug your
programs and interpret your results with confidence.

This paper focuses on techniques that capitalize on the power of
the DATA step and working with (and around) the default actions.
Topics include:

 compile versus execution time activities;
 organizing your data to maximize execution;
 data defaults, data conversions;
 missing values, formatting values;
 ordering variables;
 functions for:

 editing data,
 assigning values,
 shortening expressions
 performing table lookup;

 data management;
 effectively creating SAS data sets;
 the logic of the MERGE;
 efficiency techniques.

'Real world' examples are presented to illustrate each topic.

Introduction

SAS procedures are powerful and easy to use, but the DATA
step offers the programmer a tool with almost unlimited potential.
In the real world, we’re lucky if systems are integrated, data is
clean and system interfaces are seamless. The DATA step can
help you, your programmers, your program, and your users
perform better in the real world – especially when you take
advantage of the available advanced features. Given that any of
the topics/examples covered in this presentation have more than
enough details, idiosyncrasies, and caveats to warrant its own
tutorial, we will address selected essential processing tips and a
range of “real world” situations that illustrate:

 DATA step compile and execute
 coding efficiencies
 maximizing execution
 data: type conversions and missing values
 other data issues
 data set management
 table lookup

DATA Step Compile vs. Execute

There is a distinct compile action and execution for each DATA
and PROC step in a SAS program. Each step is compiled, then
executed, independently and sequentially. Understanding the
defaults of each activity in DATA step processing is critical to
achieving accurate results. During the compilation of a DATA
step, the following actions (among others) occur:

 syntax scan
 SAS source code translation to machine language
 definition of input and output files
 creates:

◊ input buffer (if reading any non-SAS data),
◊ Program Data Vector (PDV),
◊ and data set descriptor information

 set variable attributes for output SAS data set
 capture variables to be initialized to missing

Variables are added to the PDV in the order seen by the compiler
during parsing and interpretation of source statements. Their
attributes are determined at compile time by the first reference to
the compiler. For numeric variables, the length is 8 during DATA
step processing; length is an output property. Note that the last
LENGTH or ATTRIB statement compiled determines the
attributes.

The variables output to the SAS data set are determined at
compile time; the automatic variables are never written, unless
they have been assigned to SAS data set variables set up in the
PDV (_N_, _ERROR_, end=, in=, point=, first., last., and implicit
array indices); the variables written are specified by user written
DROP and/or KEEP statements or data set options; the default
being all non-automatic variables in the PDV. The output routines
are also determined at compile time.

The following statements are compile-time only statements.
They provide information to the PDV, and cannot by default
(except in the macro language) be conditionally executed.
Placement of the last six statements (shown below) is critical
because the attributes of variables are determined by the first
reference to the compiler:

 drop, keep, rename
 label
 retain

⇒ length
⇒ format, informat
⇒ attrib
⇒ array
⇒ by
⇒ where

Once compilation has completed, the DATA step is executed: the
I/O engine supervisor optimizes the executable image by
controlling looping, handling the initialize-to-missing instruction,
and identifying the observations to be read. Variables in the PDV
are initialized, the DATA step program is called, the user-
controlled DATA step machine code statements are executed,
and the default output of observations is handled.

By understanding the default activities of the DATA step, the SAS
programmer can make informed and intelligent coding decisions.
Code will be more flexible and efficient, debugging will be
straightforward and make more sense, and program results can

SUGI 27 Beginning Tutorials

2

be interpreted readily.

Coding Efficiencies & Maximizing Execution

The SAS system affords the programmer a multitude of choices
in coding the DATA step. The key to optimizing your code lies in
recognizing the options and understanding the implications. This
may not feel like advanced information, but the application of
these practices has far-reaching effects.

Permanently store data in SAS data sets. The SET statement is
dramatically more efficient for reading data in the DATA step than
any form of the INPUT statement (list, column, formatted). SAS
data sets offer additional advantages, most notably the self-
documenting aspects and the ability to maintain them with
procedures such as DATASETS. And they can be passed directly
to other program steps.

A “shell” DATA step can be useful. Code declarative, compile-
only statements (LENGTH, RETAIN, ARRAY) grouped,
preceding the executable statements. Block-code other non-
executables like DROP, KEEP, RENAME, ATTRIB, LABEL
statements following the executable statements. Use of this
structure will serve as a check list for the housekeeping chores
and consistent location of important information. Use consistent
case, spaces, indentation, and blank lines liberally for readability
and to isolate units of code or to delineate DO-END
constructions.

Use meaningful names for data sets and variables, and use
labels to enhance the output. Comment as you code; titles and
footnotes enhance an audit trail. Based on your understanding of
the data, code IF-THEN-ELSE or SELECT statements in order of
probability of execution. Execute only the statements you need, in
the order that you need them. Read and write data (variables and
observations) selectively, reading selection fields first, using
DROP/KEEP, creating indexes. Prevent unnecessary processing.
Avoid GOTOs. Simplify logical expressions and complex
calculations, using parentheses to highlight precedence and for
clarification. Use DATA step functions for their simplicity and
arrays for their ability to compact code and data references.

Data Conversions

Character to numeric, and numeric to character, conversions
occur when:

 incorrect argument types passed to function
 comparisons of unlike type variables occur
 performing type-specific operations (arithmetic) or

concatenation (character)

SAS will perform default conversions where necessary and
possible, but the programmer should handle all conversions to
insure accuracy. The following code illustrates:

 default conversion,
 numeric-to-character conversion using PUT function,
 character-to-numeric conversion with INPUT function:

data convert1;
 length x $ 2 y $ 1;
 set insas; *contains numeric variables flag and code;
 x = flag;
 y = code;
run;

data convert2;
 length x $ 2 y 8

 set insas; *contains numeric variables flag and code;
 x = put(flag, 2.);
 y = input(put(code, 1.), 8.);
run;

data convert3;
 length z 2;
 set insas; *contains character variable status;
 z = input(status, 2.);
run;

Missing Data

The DATA step provides many opportunities for serious editing of
data and handling unknown, unexpected, or missing values.
When a programmer is anticipating these conditions, it is
straightforward to detect and avoid missing data; treat missing
data as acceptable within the scope of an application; and even
capitalize on the presence of missing data. When a value is
stored as “missing” in a SAS data set, its value is the equivalent
of negative infinity, less than any other value that could be
present. Numeric missings are represented by a “.” (a period);
character by “ “ (blank). Remember this in range checking and
recoding. Explicitly handle missing data in IF-THEN-ELSE
constructions; in PROC FORMATs used for recoding; and in
calculations. The first statement in the following example:

 if age < 8 then agegroup = “child”;
 if agegroup = “ “ then delete;

will include any observations where age is missing in the
agegroup “child”. This may or may not be appropriate for your
application. A better statement might be:

 if (. < age < 8) then agegroup = “child”;

Depending on the user’s application, it may be appropriate to
distinguish between different types of missing values
encountered in the data. Take advantage of the twenty-eight
special missing values:
 . ._ .A - .Z

 if comment = “unknown” then age = .;
 else if comment = “refused to answer” then age = .A;
 else if comment = “don’t remember” then age = .B;

All these missing values test the same. Once a missing value
has resulted or been assigned, it stays with the data, unless
otherwise changed during some stage of processing. It is
possible to test for the presence of missing data with the N and
NMISS functions:

 y = nmiss(age, height, weight, name);
 ** y contains the number of nonmissing arguments;

 z = n(a,b,c,d);
 ** z contains the number of missings in the list;

Within the DATA step, the programmer can encounter missing
data in arithmetic operations. Remember that in simple
assignment statements, missing values propagate from the right
side of the equal sign to the left; if any argument in the
expression on right is missing, the result on the left will be
missing. Watch for the “missing values generated” messages in
the SAS log. Although DATA step functions assist in handling
missing values, it is important to understand their defaults as
well. Both the SUM and MEAN functions ignore missing values in

SUGI 27 Beginning Tutorials

3

calculations: SUM will add all the non-missing arguments and
MEANS will add the nonmissings and divide by the number of
nonmissings. If all the arguments to SUM or MEANS are missing,
the result of the calculations will be missing. This works for
MEAN, but not for SUM, particularly if the intention is to use the
result in a later calculation:
x = a + b + c; * if any argument is missing, x = . ;
x = SUM(a,b,c); *with missing argument, x is sum of nonmissings;
x = SUM(a,b,c,0); * if a,b,c are missing, result will be zero;
y = (d + e + f + g) / 4; *number of nonmissings is divided by 4;
y = MEAN(d,e,f,g); * if all argument s are missing, y = . ;

Since there are 90+ DATA step functions, the moral of the
function story is to research how each handles missing values.
New variables created in the DATA step are by default initialized
to missing at the beginning of each iteration of execution. Declare
a RETAIN statement to override the default:

 retain total 0;
 total = total + add_it;

 * this will work as long as add_it is never missing;

The SUM statement combines all the best features of the
RETAIN statement and the SUM function:

 total + add_it;

 *total is automatically RETAINed;
 * add_it is added as if using the SUM function;
 * missings will not wipe out the accumulating total;

Missing values in the right-most data set coded on a MERGE or
UPDATE statement have different effects on the left-most data
set. When there are common variables in the MERGE data sets,
missings coming from the right will overwrite. However, UPDATE
protects the variables in the master file (left-most) from missings
coming from the transaction file. (See Real World 7 example.)

Other Data Issues

♦ Re-Ordering Variables

SAS-L users periodically carry on the discussion of re-ordering
variables as they appear in a SAS data set. Remember that as
the compiler is creating the PDV, variables are added in the order
they are encountered in the DATA step by the compiler. This
becomes their default position order in the PDV and data set
descriptor. The best way to force a specific order is with a
RETAIN statement, with attention to placement. Make sure it is
the first reference to the variable and the attributes are correct. It
is possible to use a LENGTH statement to accomplish this, but a
variable attribute could be inadvertently altered.

 data new;
 retain c a v; * first reference to a b c;
 set indata; * incoming position order is a b c;
 x = a || b || c;
 run;

 data new;
 length x $ 35 a $ 10 b $ 7 c $ 12; * first reference to x a b c;
 set indata; *contains c a b, in that position order;
 x = a || b || c;
 run;

♦ Handling Character Data

Character-handling DATA step functions can simplify string
manipulation. Understand the defaults and how each function
handles missing data for optimal use.

♦ Length of target variables

Target refers to the variable on the left of the equal sign in an
assignment statement where a function is used on the right to
produce a result. The default length for a numeric target is 8;
however, for some character functions the default is 200, or the
length of the source argument. The SCAN function operates
unexpectedly:

 data _null_;
 x= ’abcdefghijklmnopqrstuvwxyz’;
 y = scan(x,1,’k’);
 put y=;
 run;

 y=abcdefghij; * y has length of 200;

The results from SUBSTR are different:

 data old;
 a=’abcdefghijklmnopqrstuvwxyz’;
 b=2; c=9;
 run;

 data new;
 set old;
 x=substr(a,23,4);
 y=substr(a,b,3);
 z=substr(a,9,c);
 put a= b= c= x= y= z=;
 * a is length $ 26; * x y z have length $ 26;
 run;

 data old;
 length idnum $ 10 name $ 25 age 8;
 idnum=substr(var1_200,1,10);
 name=substr(var1_200,11,25);
 age=substr(var1_200,36,2);
 * length statement overrides default of 200
 * for idnum, name, and age;
 run;

♦ SUBSTR as pseudo-variable

Another SAS-L discussion involved the use of SUBSTR as a
pseudo-variable. Note that when the function appears to the left
of the equal sign in the assignment statement, text replacement
occurs in the source argument:

 data fixit;
 source = ‘abcdefghijklmnopqrstuvwxyz’;
 substr(source, 12, 10) = ‘##########’;
 put source=;
 run;

 source=abcdefghijk##########vwxyz

SUGI 27 Beginning Tutorials

4

♦ Numeric substring

A similar function to SUBSTR if often desired for numerics. One
cumbersome solution involves: 1) performing numeric to
character conversion, 2) using SUBSTR to parse the string, and
3) converting the found string back to numeric. SAS would also
do such conversions for you if you reference a numeric as an
argument to a character function or include a character variable
in a numeric calculation. See section on data conversions.

A simpler and less error-prone solution (trick) is the use of the
numeric MOD and INT functions:

 data new;
 a=123456;
 x = int(a/1000);
 y = mod(a,1000);
 z = mod(int(a/100),100);
 put a= x= y= z=;
 run;

 a=123456
 x=123
 y=456
 z=34

♦ Handling imbedded blanks

The TRIM and TRIMN functions are used to removed embedded
blanks. Notice the different results:

 data _null_;
 string1='trimmed ';
 string2='?';
 string3='!';
 string4=' ';
 w=string1||string2;
 x=trim(string1)||string3;
 y=string2||trim(string4)||string3;
 z=string2||trimn(string4)||string3;
 put w= x= y= z=;
 run;

 w = trimmed ?
 x = trimmed!
 y = ? !
 z = ?!

Table Lookup

Recoding is a common programming challenge, and can be
accomplished in several ways:

⇒ hard-coded IF statements
⇒ MERGE
⇒ PROC FORMAT with the PUT function
⇒ data driven FORMATs.

 Hard-Coded IF Statements

For this example, we know the DEPTINFO (descriptive
information for each DEPTNAME) for each sort code (SORTCD):

1001 Operations
1002 Hardware
1003 Software (IBM)
1004 Software (MAC)
1005 LAN/WAN
1006 Technical Support
1007 Help Desk 1008 Administrative Support
1009 Documentation Library
1010 Incentive Program
1011 Unassigned 1011
1012 Unassigned 1012
1013 Unassigned 1013
1014 Unassigned 1014
1015 Unassigned 1015

Data set EXPENSES contains the expense data with only
SORTCD as an identifier. It is required that all reports must
display the lengthy department description.

1002 12 94 150000
1005 12 94 200000
1003 12 94 500000
1006 12 94 329500
1010 12 94 975200
1007 12 94 150000
1011 12 94 50000
2004 12 94 230500

The users want a listing and separate SAS data set with valid
expense data (an “unassigned” sortcode with expenses is
considered an error). The deliverables will be an error report and
an error file to facilitate corrections.

EXAMPLE 1: Table Lookup with IF statements:

 data ifexp iferr;
 set expenses;
 length deptname $25 ;
 if 1001 le sortcd le 1010 then
 do;
 if sortcd = 1001 then deptname = ’Operations’;
 else if sortcd = 1002 then deptname = ’Hardware’;
 else if sortcd = 1003 then deptname = ’Software
(IBM)’;
 else if sortcd = 1004 then deptname = ’Software
(MAC)’;
...
 output ifexp;
 end;
 else output iferr;
 run;

This method uses the IF/ELSE statements efficiently and
accomplishes the objective. But having a separate data set for
users to track the sort codes they can still assign would be more
useful and easily maintainable.

SUGI 27 Beginning Tutorials

5

 Table Lookup using MERGE

EXAMPLE 2: Table Lookup with MERGE (assuming a data set
with department descriptions (DEPTINFO) for each SORTCD has
been created:

 proc sort data=expenses;
 by sortcd;
 run;

 proc sort data=deptinfo;
 by sortcd;
 run;

 data expens2 errdept missmnth;
 merge expenses(in=inexp) deptinfo(in=indpt);
 by sortcd;
 if inexp and indpt then
 do;
 if index(upcase(deptname),’UNASSIGNED’) > 0 then
 output errdept;
 else output expens2;
 end;
 else if inexp and not indpt then output errdept;
 else if (indpt and not inexp) and
 index(upcase(deptname),’UNASSIGNED’) = 0
 then output missmnth;
 run;

The MERGE provides the users with a “bonus” file by coding
multiple data set names on the DATA statement and using the
IN= option on the MERGE statement. Data set EXPENS2
contains the valid expense data; ERRDEPT holds the incorrect
expense data; and MISSMNTH (optional) shows which sortcodes
have no expense data for the month.

 PROC FORMAT with the PUT function

EXAMPLE 3: PROC FORMAT with PUT function:

 proc format;
 value regfmt 100-200 = “NE”
 201-300 = “NW”
 301-400 = “SE”
 401-500 = “SW”;
 run;

 data new;
 set indata; *contains numeric variable city;
 region = put(city, regfmt.);
 *creates a new variable region based on values of city;
 run;

 data sw;
 set indata;
 if put(city, regfmt.) = “SW”;
 * creates a subset based on value of city;
 * does not create a new variable to do this;
 run;

Accomplishing data recoding using PROC FORMAT with the
PUT function provides several benefits to the users and
programmer: it is readable; easy to maintain -- the list of values
need only be changed in one location; the formats can be
permanently stored in a format library; the DATA step code itself
is shorter and easier to follow.

 Data Driven PROC FORMAT Generation

EXAMPLE 4: Table Lookup using a SAS data set to generate the
PROC FORMAT:

 data fdnm(keep=start end label fmtname);
 set deptinfo end=eofdept;
 length label $32;
 start = sortcd;
 end = sortcd;
 label = deptname;
 fmtname = 'convdept';
 output fdnm;
 if eofdept then
 do;
 start = .;
 end = .;
 label = ’ERROR’;
 fmtname = ’convdept’;
 output fdnm;
 end;
 run;

 proc format cntlin=work.fdnm;
 run;

The overhead associated with this solution comes from reading
the DEPTINFO dataset and using it to make a CNTLIN dataset
for PROC FORMAT (see SAS log). The temporary dataset,
WORK.FDNM, is passed to PROC FORMAT with the CNTLIN=
options to create the SAS format CONVDEPT:

FORMAT NAME: CONVDEPT LENGTH: 22 NUMBER OF VALUES: 18
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 22 FUZZ: STD

START END LABEL (VER. 6.11)

. . ERROR
0 1000 ERROR
1001 1001 Operations
1002 1002 Hardware
1003 1003 Software (IBM)
1004 1004 Software (MAC)
1005 1005 LAN/WAN
1006 1006 Technical Support
1007 1007 Help Desk
1008 1008 Administrative Support
1009 1009 Documentation Library
1010 1010 Incentive Program
1011 1011 Unassigned 1011
1012 1012 Unassigned 1012
1013 1013 Unassigned 1013
1014 1014 Unassigned 1014
1015 1015 Unassigned 1015
1016 9999 ERROR

Once the format (or informat) has been created, it can be used to
read the expense data with an informat statement, print the
expense data using the format in a PROC PRINT, or apply the
format to the SORTCD variable in the expense program giving
the users the monthly expense and error reports required:

 data fmtexp fmterr;

SUGI 27 Beginning Tutorials

6

 set expenses;
 length deptname $25;
 deptname = put(sortcd,convdept.);
 if deptname = ’ERROR’ or
 index(upcase(deptname),’UNASSIGNED’) gt 0)
 then output fmterr;
 else output fmtexp;
 run;

Using format from CNTLIN with PROC PRINT:

OBS SORTCD EXPENSES MONTH YEAR DEPTNAME
1 1002 150000 12 94 Hardware
2 1003 500000 12 94 Software (IBM)
3 1005 200000 12 94 LAN/WAN
4 1006 329500 12 94 Technical Support
5 1007 150000 12 94 Help Desk
6 1010 975200 12 94 Incentive
Program

ERRORS using Proc Format CNTLIN data set

OBS SORTCD EXPENSES MONTH YEAR DEPTNAME
1 1011 50000 12 94 Unassigned 1011
2 2004 230500 12 94 ERROR

 Table Lookup Conclusions

For small lists and table lookups against small lists on relatively
static data, the MERGE example is preferable to IF/ELSE. Where
data are volatile, or the lookup list is very large, it will prove more
efficient to use the PROC FORMAT with the PUT function and/or
create the formats from data that drives the list. The formats are
easily maintained, excellent documentation, and provide a
mechanism for making changes in only one location in the
program.

Notice from the example that other applications of PROC
FORMAT with the PUT function become apparent. The table
lookup can re-code variables, assign values, range-check values,
and shorten expressions.

Data Set Management

Here’s where the rubber meets the road -- the odd challenges
encountered in user applications, like ‘em or not. And this is
where the power of the DATA step can be the most effective -- in
handling “real world” situations:

 referencing a data set at compile time
 oddly located “bad” records
 writing for word processing packages
 variable-length raw data records
 deleting observations based on last in a series
 optimizing first. processing
 manipulating sort order
 choosing MERGE or UPDATE

 Real Word 1: Referencing a Data Set at
Compile Time

It is often necessary to capture the number of observations in a
data set at compile time:

 data _null_;
 call SYMPUT(‘n_obs’, put(n_obs, 5.));
 stop;
 set indata nobs = n_obs;
 run;

The SYMPUT function in the example above will capture the
number of observations from the data set descriptor at compile
time, without processing any data. The value of the macro
variable &n_obs becomes available to reference from another
program step.

 Real World 2: Other People’s Data

Other people’s data entry programs can cause unexpected
problems. Suppose there’s a bug in the CICS/COBOL program
that collects sales data. The first record for each city and each
hour is known to be "bad" data. The COBOL programmers get rid
of the record when they pass the data to the General Ledger
system. However, other departments can only read the raw data
for ad hoc reports.

This input data shows which lines should be deleted (note: you
can’t delete the first observation and every third observation
because there aren’t always three people working in an hour, nor
do they necessarily occur in the same order):

BOSTON 7 BILL 107000 --
delete this
BOSTON 7 DAVE 345998
BOSTON 7 JEAN 356754
BOSTON 8 DAVE 40 --
delete this
BOSTON 8 BILL 98
BOSTON 8 JEAN 64
….
….

A simple way to solve this problem uses the features of PROC
SORT. After you read the raw data, sort the data by CITY and
HOUR (not by name, so SAS will retain the names in the order
they appeared in original data set). This sort assures there will
never be HOUR 7 for LONDON occurring immediately after
HOUR 7 for BOSTON. Use the first.hour automatic SAS variable
to delete bad data.

 proc sort data=citysale;
 by city hour;
 run;

 data dropit keepit;
 set citysale;
 by city hour;
 if first.hour then
 do;
 output dropit;
 delete;
 end;
 output keepit;
 run;

Using first.hour would drop these:

CITY NAME HOUR DOLLARS

BOSTON BILL 7 107000
BOSTON DAVE 8 40
BOSTON JEAN 9 98

SUGI 27 Beginning Tutorials

7

LONDON MONTY 15 567838
LONDON JEAN 16 56
LONDON HELEN 17 773
PARIS SERGEI 3 7698
….
…..

Using first.hour would keep the correct records:

CITY NAME HOUR DOLLARS

BOSTON DAVE 7 345998
BOSTON JEAN 7 356754
BOSTON BILL 8 98
BOSTON JEAN 8 64
BOSTON DAVE 9 63
BOSTON BILL 9 25
LONDON HELEN 15 245810
LONDON JEAN 15 45625
LONDON HELEN 16 32
LONDON MONTY 16 354
LONDON MONTY 17 232
LONDON JEAN 17 456
PARIS PIERRE 3 7936
PARIS AIMEE 3 12948

 Real World 3: VP’s Admin likes WORD

The user wants mailing labels from their SAS data set in WORD
format. The text strings ’NAME’ and ’LOCATION’ must appear on
the first line of the file; on the subsequent data lines, each field
must be separated by the WORD tab character (hex value =09).
After the OUTLABEL file (ASCII) is written, it is “pulled” into
WORD and merged with the WORD label document:

libname newlabl ’c:\saspaper’;
filename outlabel ’c:\saspaper\barbnew.txt’;
 *** the note-1 field to stuff the envelopes with the right document;
 *** note-1 appears on the checklist but not the labels;

proc sort data=newlabl.barb;
 by note1 lastname name1;
run;

proc print data=newlabl.barb;
 title ’SAS dataset: newlabl.barb -- do labels with WORD’;
 title2 ’Envelope checklist’;
 id name1;
 var lastname deptloc note1 note2;
run;

data _null_;
set newlabl.barb;
length hextab $1;
retain hextab ’09’x;
file outlabel;
if _n_ = 1 then put @1 hextab ’NAME’ hextab ’LOCATION’;
put hextab : $1. name1 : $15.-l lastname : $15.-l hextab : $1. deptloc : $8.-l ;
run;

The resulting ASCII file is ready to bring into WORD (tab
characters do not display):

NAME LOCATION

LORD GEOFFREY VANDERSNEER 1111/111
BOBBIT ALITTLE 3195/717
LEOPOLD BLOOM 6969/069
HERMAN MELVILLE 8592/533
GEORGIA ONMYMIND 4854/217
ISHMAEL SAILOR 3299/007
MAX ANDERSON 4423/12
BILBO BAGGINS 9366/941
WRASSLE BALDARCHER 5467/149
R. T. EFMANUAL 1929/507
SEAMUS JOYCE 6969/069
DONNA REED 7907/626
THOMAS T. RHYMER 8832/777
PUDDIN TAME 8633/321
KERMIT PHROG 9923/555

 Real World 4: Hinky Data

Transferring ASCII files between various software packages and
platforms can also cause problems. When an ASCII file was
transferred between a MACINTOSH mail program to a PC, the
text lines were written as variable length records (vs. fixed on the
MAC), and many apostrophes became represented by hex code
12 (shows as a ‘.’ in the SAS LOG). In addition, the MAC tab
character became ‘>‘ in the translated file.

If a 40 page story is late for a publishing deadline: you can:
 beg secretary to make changes in WP package;
 make changes in the word processor yourself; or
 write program using character manipulation functions.

The “damaged” file (note periods instead of apostrophes and >):

>I.ll never see another loss like that. No more soldiers, no more blood.
She hadn.t ever tried to talk to the ghosts; it was hard to tell which one was
>The travel clerk didn.t have to remind her not to approach the time tourists,
said to the uncaring sky. "What.s the good of all these dead custers,
anyway?"
(undamaged text deleted)

 filename hinky ’c:\saspaper\hinky.txt’;
 filename fixed ’c:\saspaper\fixed.txt’;
 data _null_;
 infile hinky missover length=lg;
 input @1 textline $varying200. lg;
 length badchar apos parachar $1;
 retain badchar ’12’x apos "’" parachar ’>’;
 if index(textline,badchar) gt 0 then
 do;
 list;
 textline = translate(textline,apos,badchar);
 end;
 file fixed;
 if index(textline,parachar) gt 0 then
 do;
 textline = translate(textline,’ ’,parachar);
 put @4 textline;
 end;
 else put @1 textline;
 run;

SUGI 27 Beginning Tutorials

8

(corrected text)
I’ll never see another loss like that. No more soldiers, no more blood.
She hadn’t ever tried to talk to the ghosts; it was hard to tell which one was
The travel clerk didn’t have to remind her not to approach the time tourists,
uncaring sky. "What’s the good of all these dead custers, anyway?"

 Real World 6: Need to delete last in a series

A health care worker has a data set with unequal lines of data per
person for different years with the same variables per line. The
objectives:

 keep all lines for person if last yr is 1991 or less
 delete all lines if year on last record is GE 1992:

 data yrinfo;
 length id 3 yr 3 info $10;
 input id yr info;
 cards;
 1 80 asthma
 1 82 bronchitis
 1 83 asthma
 1 86 pneumonia
 1 91 pleurisy <--- keep all for id 1
 2 90 bronchitis
 2 91 bronchitis
 2 92 sinusitis <--- delete all for id 2
 3 80 bronchitis
 ;
 run;

The simplest solution is a sort of the input data by ID and
descending YR. This order allows the first.yr automatic variable to
be the last year in the patient’s data. When first.yr is greater than
or equal to 92, then a delete flag (DELFLAG) will be set. The
code creates two data sets: KEEPIT and DELETEIT; however, in
a production environment, it might only be necessary to use a
subsetting IF (if delflag=0;) to output only the desired
observations:

 proc sort data=yrinfo;
 by id descending yr ;
 run;

 data keepit deleteit;
 set yrinfo;
 by id descending yr ;
 length delflag 3;
 retain delflag ;
 if first.id then delflag = 0;
 if first.id and first.yr and yr ge 92 then delflag = 1;
 if delflag = 1 then
 do;
 output deleteit;
 delete;
 end;
 if delflag = 0 then output keepit;
 run;

 Real World 6: They Want WHAT???!!!

The creation of a “super-sort” variable can allow you to minimize
the number of first. variables used to successfully process a data
set. In this example, trouble tickets (TICKET) can be assigned to
multiple directors (DIRECTOR) and multiple reporting areas
(AREA) for investigation of system outages (DURATION). The
system outages (OUTAGES) can affect multiple lines of
business(LINEBUSN):

TICKET LINEBUSN DIRECTOR AREA DURATION
321 NET TURNER OPERATIONS 35
565 CRP MILLER SOFTWARE 12
565 CRP MILLER LAN/WAN 12
565 NET MILLER SOFTWARE 15
565 NET MILLER LAN/WAN 30
565 BUS MILLER SOFTWARE 30
565 BUS MILLER LAN/WAN 30
436 CRP JONES HARDWARE 80
436 CRP MILLER SOFTWARE 25
436 NET JONES HARDWARE 75
436 NET MILLER SOFTWARE 25
436 BUS MILLER SOFTWARE 75
436 BUS JONES HARDWARE 25

To complete the tracking process, users want two reports: 1) a
summary by line of business and director showing the total
number of minutes for each ticket and the number of areas
affected; 2) a list indicating line of business at the top of each
page for every unique line of business/director/ticket combination.
A “super-sort” variable can be created (using character
concatenation) to simplify processing, replacing the more tedious
first. processing for all the combinations of LINEBUSN,
DIRECTOR and TICKET (though NOT AREA):

 data sortexmp;
 set outages;
 length suprsort $11;
 suprsort =linebusn||substr(director,1,5)||put(ticket,3.0);
 run;
*(Note numeric variable ticket converted to character for the
substring);

Subsequent processing uses the SUPRSORT variable to
produce the detail report and summary report file in one data
step:

 proc sort data=sortexmp;
 by suprsort linebusn director area ticket;
 run;

 filename detail ’c:\saspaper\suprdetl.prn’;

 data dirtotl(keep=linebusn director ticket numarea dirtot);
 set sortexmp;
 by suprsort;
 retain dirtot numarea;

SUGI 27 Beginning Tutorials

9

 file detail print;
 if first.suprsort then
 do;
 dirtot=0;
 numarea = 0;
 put _page_ ;
 title ’detail listing by line of business’;
 put @5 ’line of business: ’ linebusn;
 end;
 dirtot + duration;
 numarea + 1;
 put @1 linebusn director area ticket duration;
 if last.suprsort then output dirtotl;
 run;

 proc sort data=dirtotl;
 by linebusn director;
 run;

 proc print data=dirtotl;
 by linebusn;
 sum dirtot;
 run;

The SUPRSORT variable can also be used in SAS procedures,
like PROC MEANS or PROC FREQ, to minimize the
unnecessary _TYPE_s (PROC MEANS) or TABLEs (PROC
FREQ) produced by using multiple BY statements. The summary
report from data set DIRTOTL:

LINEBUSN=BUS

OBS DIRECTOR TICKET DIRTOT NUMAREA

1 JONES 436 25 1
2 MILLER 436 75 1
3 MILLER 565 60 2

LINEBUSN 160

And the detail report looks like:

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS JONES HARDWARE 436 25

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS MILLER SOFTWARE 436 75

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS MILLER LAN/WAN 565 30
BUS MILLER SOFTWARE 565 30

 Real World 7: Manipulating Sort Order

When a Performance Tracking system was coded, three-
character codes were used for line of business. However, the
users rejected the report because the lines of business printed in
alphabetical order, not in the order that the customers expected.
The first report generated appeared as follows:

Listing by Line of Business in Alpha Order

Line of Business=ACT

App Calc Performance
Name Used Objective
ACCOUNTS RECEIVABLE VIP 0.9756
CONTROLLER NONVIP 0.9900
GENERAL LEDGER NONVIP 0.9800
PAYROLL VIP 0.9787

Line of Business=CRP

App Calc Performance
Name Used Objective
BENEFITS NONVIP 0.9800
GROUNDS NONVIP 0.9800
HUMAN RESOURCES NONVIP 0.9500
MEDICAL NONVIP 0.9900
PURCHASING NONVIP 0.9800
RECEIVING NONVIP 0.9800
TRAVEL NONVIP 0.9700

Line of Business=NET

App Calc Performance
Name Used Objective
LOCAL AREA NETWORK NONVIP 0.9900
ROLM EQUIPMENT VIP 0.9900
SITE LICENSE NONVIP 0.9900
SYSTEM SOFTWARE VIP 0.9787
TECHNICAL SUPPORT VIP 0.9700
WIDE AREA NETWORK NONVIP 0.9900

Using PROC FORMAT, the system designer can code the line of
business and force the specific expected order on the report:

 proc format;
 value $lobord ’NET’ = 1
 ’CRP’ = 2
 ’OPR’ = 3
 ’ACT’ = 4;
 value nicename 1 = ’NETWORK’
 2 = ’CORPORATE’
 3 = ’OPERATIONS’
 4 = ’ACCOUNTING’;
 run;

 data neword;
 set applinfo;
 length ordlob 3.;
 ordlob = put(linebusn,$lobord.);
 run;

 proc sort data=neword;
 by ordlob appname;
 run;

Once the data is sorted by the coded variable and appname, the
NICENAME format can be applied to substitute the long name for
lines of business and manipulate the order of presentation on the
users’ reports:

List of Applications by Line of Business (in different order)

Line of Business=NETWORK

App Calc Performance
Name Used Objective
LOCAL AREA NETWORK NONVIP 0.9900
ROLM EQUIPMENT VIP 0.9900
SITE LICENSE NONVIP 0.9900
SYSTEM SOFTWARE VIP 0.9787
TECHNICAL SUPPORT VIP 0.9700
WIDE AREA NETWORK NONVIP 0.9900

(Line of Business=CORPORATE, etc., follow.)

SUGI 27 Beginning Tutorials

10

 Real World 8: MERGE vs. UPDATE

If a file only needs a few changes, why recreate the entire file just
to make those changes? This scenario demonstrates the benefit
of the UPDATE statement over the MERGE for some
applications. The master file (MASTER) contains names,
birthdays, gift ideas and other information:

NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
jody 08-23-84 g14 purple Nancy Drew niece 20
john 10-14-93 t4 red Lion King nephew 20
meghan 12-02-83 j5 green music godchild 50
morgan 12-02-83 j5 teal theater godchild 50
sal 04-11-45 mxl none hang gliding college 5
mary ann 10-17-95 b18 pink rattles daughter 100

Using a MERGE to add a new person is fine. But the merge will
produce unreliable results when changing values of any of the
variables (Morgan’s favorite color to orange or Jody’s interest to
Goose Bumps books). This application might suggest a file of
change transactions (UPDTTRNS) and a merge by NAME and
BDATE:

 data newmstr2;
 merge master(in=inmast) updttrns(in=intran);
 by name bdate;
 if (inmast and intran) or (inmast and not intran)
 then output newmstr2;
 if intran and not inmast then output newmstr2;
 run;

The resulting data set added Suzanne, but lost all of Jody’s
information except INTEREST. Morgan's color changed, but all of
other information was lost:

New master file after using merge
NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
jody 08/23/84 _ Goose Bumps .
john 10/14/93 t4 red Lion King nephew 20
mary ann 10/17/95 b18 pink rattles daughter 100
meghan 12/02/83 j5 green music godchild 50
morgan 12/02/83 orange .
sal 04/11/45 mxl none hang gliding college 5
suzanne 11/15/50 na na mystery series coworker 5

An UPDATE application is actually called for. Create an update
transaction, using named input and the special missing option (_)
to change only the variables requiring update. Use the same
variables on the transaction file as on the master file. Variables
in the transaction file with missing values will NOT overwrite the
fields in the master file. (LIMIT for Morgan has been explicitly
coded to “.” to demonstrate this feature). Only those changes with
the special missing character underscore (_) will update a master
file field to missing (see Jody’s color):

 data updttrns;
 length bdate 8 interest $15 limit 8;
 informat bdate mmddyy8.;
 input name= $& bdate= size= $ color= $ interest= $& what= $ limit=;
 missing _ ;
 cards;
name=morgan bdate=12-02-83 color=orange limit=.
name=jody bdate=08-23-84 interest=Goose Bumps color=_
name=suzanne bdate=11-15-50 size=na color=na interest=mystery series limit=5
what=coworker
;
 run;

 proc sort data=updttrns;
 by name bdate;
 run;

 ** master file previously sorted by name and bdate;

 data newmstr;
 update master updttrns;
 by name bdate;
 run;

The UPDATE statement produces the desired result:

Master file after being updated by transactions
NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
jody 08/23/84 g14 Goose Bumps niece 20
john 10/14/93 t4 red Lion King nephew 20
mary ann 10/17/95 b18 pink rattles daughter 100
meghan 12/02/83 j5 green music godchild 50
morgan 12/02/83 j5 orange theater godchild 50
sal 04/11/45 mxl none hang gliding college 5
suzanne 11/15/50 na na mystery series coworker 5

Contact Information

The author may be contacted at:

Neil Howard
Pfizer Global Research and Development
2800 Plymouth Road 200/241
Ann Arbor, MI 48105
734-622-2319
neil.howard@pfizer.com

References

1. Proceedings of the Annual Conference of the SAS Users
Group International. Cary, NC: SAS Institute Inc.

 DiIorio, F.: The Case for Guidelines: A SAS System Style
Primer. San Francisco, CA, April 1989.

 Howard, N: Efficiency Techniques for Improving I/O in the
DATA Step. New Orleans, LA, February 1991.

 Rabb, Henderson, Polzin: The SAS System Supervisor – A
Version 6 Update, 1992

 Repole, W: Avoiding, Accepting, and Taking Advantage of
Missing Data, 1994

 Howard, N: Discovering the FUN in Functions. New York,
NY, April 1994.

 Howard, N, Zender, C.: Advanced DATA Step Topics and
Techniques, March 1996.

 Howard, N, Zender, C.: Advanced DATA Step Topics and
Techniques, April 1999.

SUGI 27 Beginning Tutorials

11

2. SAS Institute Inc.: Advanced SAS Programming Techniques
and Efficiencies: Course Notes, 1992. SAS Programming Tips: A
Guide to Efficient SAS Processing, 1990.

SAS and SAS/GRAPH are registered trademarks of SAS
Institute, Inc., Cary, NC.

SUGI 27 Beginning Tutorials

